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Abstract
We present Miura transformations for all discrete Painlevé II equations known
to date. We then use these Miuras to derive special solutions in terms of discrete
Airy functions and to construct auto-Bäcklund transformations for the discrete
Painlevé equations. These transformations are then used to generate rational
solutions. Some new forms of d-PII and d-P34 are obtained as well.

PACS numbers: 02.30.Hq, 02.30.Ik

1. Introduction

The Painlevé equations are reputed for the richness of their interrelations. This is all the
more true if we consider not just the six equations related to Painlevé transcendents but all the
equations of the Painlevé/Gambier classification [1, 2]. A most interesting feature is the fact
that some of these interrelations are just reductions of relations that hold between some well-
known integrable evolution equations. The most famous among these is the transformation
relating the KdV to the mKdV equation, also known as the Miura transformation [3] from the
name of its inventor. Starting from

vt − 6v2vx + vxxx = 0

we introduce the transformation

u = −v2 − vx

for which we obtain

ut + 6uux + uxxx = 0.
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Next we consider the similarity reduction of those equations. We introduce the new
variables v(x, t) = (3t)−1/3w(z), u(x, t) = (3t)−2/3y(z), z = x/(3t)1/3 and obtain the Miura
transformation (a prime denotes d/dz)

y = −w′ − w2

and the equations

w′′ = 2w3 + zw + κ (1.1)

q ′′ = q ′2

2q
− q2 − qz − (2κ + 1)2

2q
(1.2)

where q = 2y − z. Equation (1.1) is just the Painlevé II equation, while equation (1.2) is what
is known as P34 (being the 34th equation in the Painlevé/Gambier classification) [4].

At this point we cannot resist the temptation of a remark on nomenclature, related to the
names of the Painlevé equations. From the analogy with the KdV–mKdV one could consider
that equation PII is just the modified version of P34. Still PII is the more fundamental object
and thus the use of the qualifier ‘modified’ would have been rather awkward in this case.

From the above analysis one could think that such Miura transformations have an
asymmetrical structure leading from equation A to equation B but not the reverse. This
erroneous conclusion is due to the fact that in most cases only one half of the Miura
transformation is presented. The correct approach consists in introducing a pair of Miuras
which relate the two equations in a completely symmetrical way. This is best assessed within
the Hamiltonian formalism of Okamoto [5] for the description of Painlevé equations (Ps).
Okamoto introduced the Hamiltonian for a given P and writes a Miura as the Hamiltonian
equations of motion,

dx

dt
= ∂H

∂p

dp

dt
= −∂H

∂x

where t is a ‘time’ related in a simple way to the independent variable of the P. Eliminating
either x or p between the two equations then yields a Painlevé equation and its Miura
transformed equation. In the case of the Painlevé II equation the two Miura transforms
are the following:

q = −2(w′ + w2) − z (1.3)

w = q ′ + 2κ + 1

2q
. (1.4)

One particularly useful application of the Miura transformation, apart from generating other
equations, is the derivation of elementary solutions for the Painlevé equation [6]. Indeed by
putting κ = −1/2 in the Painlevé II equation (1.1) P34 (1.2) has a special solution q = 0 which
makes w in (1.4) become indeterminate. But in this case the indeterminacy can be lifted using
the first Miura (1.3). Indeed the latter becomes

z/2 = −w′ − w2

which can be linearized using w = A′/A to the Airy equation

A′′ + (z/2)A = 0. (1.5)

Another use of the Miura transformations is to generate auto-Bäcklund (or Schlesinger)
transformations for the initial equation. This is done through the combination of the Miura
and some invariance of the transformed equation. In the case at hand, we remark that P34 is
invariant under the transformation 2κ +1 → −(2κ +1). Moreover, PII is invariant with respect
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to a simultaneous change in sign of the dependent variable and the parameter. Thus we start
from w(κ), use (1.3) to obtain q and using the Miura (1.4) we construct

u = q ′ − (2κ + 1)

2q
(1.6)

which would be a solution of PII with parameter −(1 + κ). Introducing v = −u we obtain
a solution of PII with parameter κ + 1. Using (1.3), (1.4) and (1.6) and eliminating q we can
derive the auto-Bäcklund transformation (which is indeed a Schlesinger),

v = −w − κ + 1/2

w′ + w2 + z/2
(1.7)

where w ≡ w(κ) and v ≡ w(κ + 1). One particular use we have for the auto-Bäcklund/

Schlesinger transformations is to generate special solutions starting from an elementary, ‘seed’,
one. This is best illustrated in the case of the rational solutions of PII. Remarking that when
κ = 0, PII has a solution w = 0, we can use (1.7) to construct ‘higher’ rational solutions. We
thus find for κ = 1 the solution w = −1/z; for κ = 2, w = (4 − 2z3)/(4z + z4) and we can
iteratively construct solutions for any integer κ .

In this paper, we shall transpose the remarks above to the case of discrete Painlevé
equations. This work has been motivated by recent results of ours [7] where we have
investigated the possible discrete forms of the Painlevé II equations and obtained eight different
such equations [8]. In what follows, we shall present their Miura transformations and identify
the equations that the d-Ps are transformed into. Using the Miuras we shall also derive
the elementary solutions of all these d-PIIs in terms of discrete Airy functions. We shall also
construct the auto-Bäcklund transformations for these d-PIIs and present their first few rational
solutions. Some new forms of d-PII will also be derived.

2. Constructing Miura and auto-Bäcklund transformations

The first question that springs to mind when one considers the problem of finding Miura
transformations for d-Ps is how one can construct them in a systematic way. In previous
publications, we have shown how the use of the bilinear formalism can be of considerable help
[9]. However, this intermediate step based on τ functions is not mandatory. One can proceed
to a direct construction of a discrete Miura transformation starting from the simple observation
that in the continuous case the Miuras are ratios of Riccati-like quantities αu′ + βu2 + γ u + δ.
Thus in the discrete case we introduce the following general ansatz of the Miura,

xn = αynyn+1 + βyn+1 + γyn + δ

εynyn+1 + ζyn+1 + ηyn + θ
(2.1a)

yn = axnxn−1 + bxn−1 + cxn + d

exnxn−1 + f xn−1 + gxn + h
(2.1b)

where α, β, . . . , a, b, . . . , h are functions of the independent variable. Thus the problem of
the construction of the Miura given a discrete P,

xn+1 = f1(xn) − xn−1f2(xn)

f4(xn) − xn−1f3(xn)
(2.2)

(where fi are in general quartic polynomials in xn) consists in determining the functions
α, . . . , h and deriving the equations for y. As a matter of fact, the general form of the
auto-Bäcklund transformation is also the same as (2.1). An equation like (2.1b) would, for
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example, represent an auto-Bäcklund transformation where x and y are solutions of the same
d-P associated with different sets of parameters.

We can illustrate this in the case of the standard d-PII. We start from the mapping

xn+1 + xn−1 = xn(zn + zn−1) + µ + α

x2
n − 1

(2.3)

where zn = αn + β. The Miura obtained in [10] is

yn = (xn − 1)(xn+1 + 1) − zn (2.4a)

xn = yn−1 − yn + µ

yn + yn−1
. (2.4b)

Eliminating xn leads to the discrete form of P34,

(yn+1 + yn)(yn−1 + yn) = −4y2
n + µ2

yn + zn

. (2.5)

Obtaining the Airy solutions for (2.3) is straightforward. Putting yn = 0 and µ = 0 we find
from (2.4a)

xn+1 = zn + 1 − xn

xn − 1
(2.6)

which is a discrete Riccati that linearizes through a Cole–Hopf transformation xn =
1 + Rn/Rn−1 and we thus find that (2.6) linearizes to a discrete analogue of the Airy equation:

Rn+1 − 2Rn + znRn−1 = 0. (2.7)

The auto-Bäcklund transformation for (2.3) has the form

χn = −xn − µ(xn − 1)

(xn+1 + 1)(xn − 1) − zn − µ/2
(2.8)

where χn = xn(µ− 2α) and xn = xn(µ) correspond to parameters µ− 2α and µ respectively.
The auto-Bäcklund transformation (2.8) can be used to generate solutions starting from a given
‘seed’. In the case of (2.3) we have a rational solution xn = 0 when µ = −α. Using (2.8) we
find that χn = α/(1 + zn − α/2) is another rational solution which exists for µ = −3α.

A second discrete Painlevé equation is the one we call the alternate d-PII

zn

xn+1xn + 1
+

zn−1

xn−1xn + 1
= −xn +

1

xn

+ zn + k. (2.9)

This equation was extensively studied in [11] and its Miura (obtained in [12]) was investigated
in considerable detail in [13]. We shall not go into these details here lest we overburden this
paper with results which have already been known for quite a few years.

3. The Miura and auto-Bäcklund transformations of the various discrete
Painlevé II equations

Six new d-PII equations were analysed in [7] from the point of view of the bilinear formalism.
Their full (parameter) freedom was also investigated there, which led us to conclude that most
of them (with just one exception) are actually reduced forms of systems that are far richer than
a mere d-PII. Still the interesting fact remains that these ‘reduced’ d-PII forms possess all the
nice properties one would expect from any discrete analogue of the Painlevé II equation. In
what follows, we shall examine these equations as d-PIIs, i.e., we shall produce their Miura
transformations, derive the associated d-P34, obtain elementary Airy-type solutions under the
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appropriate constraints, derive their auto-Bäcklund transformations and use these to obtain
rational solutions for the d-PIIs starting from (trivial) ‘seed’ solutions.

(i) The first mapping we shall examine is a q-PII equation of the form

xn+1xn−1 = an(xn − bn)

xn(xn − 1)
. (3.1)

The full freedom of an and bn, that is compatible with integrability, as presented in [14] is
given by log an = αn+β +γ (−1)n and log bn = αn+δ−γ (−1)n but in what follows we shall
work with γ = 0 and introduce bn = qn = enα ≡ q0λ

n, an = aqn. The Miura transformation
for (3.1) is

yn = c

aqn

xn−1(xn − 1) (3.2a)

xn = cqn

yn+1yn − 1

yn − c
(3.2b)

where c2 = −aλ is a constant. From (3.2) we obtain the q-P34 equation

(ynyn+1 − 1)(ynyn−1 − 1) = 1

qn

(yn − c)(yn − 1/c). (3.3)

In order to find the Airy-type solutions the indeterminacy of xn in rhs of (3.3b) appears when
yn = c and c2 = 1. In this case, i.e. aλ = −1 we have a solution of (3.1) given by

xn−1(xn − 1) = −qn−1. (3.4)

Putting xn = Rn+1/Rn we can linearize (3.4) to

Rn+1 − Rn + qn−1Rn−1 = 0

which is a q-discrete form of the Airy equation. This can be easily checked through the
continuous limit of (3.4). Using the ansatz introduced in [8] xn = (1 + εw)/2, λ =
1 + ε3/2, q0 = 1/4, we find that (3.4) reduces to the Ricatti w′ = −w2 − z/2, while the
condition aλ = −1 goes over to κ = −1/2. Similarly, the ansatz yn = 1 − ε2u leads to P34

for u at the continuous limit.
In order to construct the auto-Bäcklund transformations we shall use the invariance of

q-P34 under the transformation c → 1/c. Thus one starts from (3.2a) where c → 1/c (but
with the same yn) and uses (3.2a) to eliminate yn. In the resulting equation we use q-PII, to
eliminate xn−1 and obtain finally

Xn = xn(xn+1 − 1)(xn − qn) + qnxnxn+1

xnxn+1 + aλ(xn − qn)
(3.5)

which is a solution of q-PII for parameter 1/aλ2. Now, using the invariance of (3.1) under
xn → qn/xn, a → 1/a we construct χn = qn/Xn which is indeed a Schlesinger transformation
since χn is a solution corresponding to parameter ã = aλ2.

The rational solutions of q-PII can be constructed starting from the seed solution xn = √
qn

which exists provided a = −1. Using the auto-Bäcklund (3.5) we find that for a = −1/λ2

we have the next rational solution

xn = c
√

qn

c − (c + 1)
√

qn

1 − (c + 1)
√

qn

(3.6)

where c = 1/
√

λ.

(ii) The second mapping is again a q-PII

xn+1xn−1 = an(xn − bn)

xn − 1
(3.7)



8424 A S Carstea et al

where the full freedom of an and bn is given by log an = αn + β + (−1)nγ + jnδ + j 2nζ,

log bn = 2αn + θ − (−1)nγ − jnδ − j 2nζ where j 3 = 1. In what follows, we shall restrict
ourselves to γ = δ = ζ = 0 and choose the origin of n such that an = aqn, bn = q2

n with
qn = λn.

The Miura transformation of (3.7) is

xn = an+1(1 − cyn)

c(yn−1 − c)
(3.8a)

yn = c
(
xnxn+1 − xn + q2

n

)
an+1xn+1

(3.8b)

where c = aµ3 with λ = µ2. Eliminating xn we find the q-P34

(ynyn+1 − 1)(ynyn−1 − 1) =
(

1 − yn

aµ

)
(yn − c)

(
yn − 1

c

)
. (3.9)

The Airy-type solution for (3.7) is obtained from (3.8b) with yn = c provided c2 = 1, i.e.
a2λ3 = 1. This leads to the discrete Riccati

xn+1(xn − an+1) = xn − bn (3.10)

which can be linearized through xn = 1 + anRn/Rn+1 to

(an+1 − 1)Rn+1 − (an − 1)Rn + an−1Rn−1 = 0

which is not a mere q-Airy, but in fact a q-confluent hypergeometric equation. However, it
can be seen that the continuous limit of (3.10) is w′ = −w2 − z/2, as expected, provided that
λ = 1 + 2ε3/3, xn = 1/3 + 2εw/3.

For the construction of the auto-Bäcklund we remark that (3.9) is invariant under c → 1/c

while (3.7) is invariant under xn → q2
n

/
xn, a → 1/a. We find finally that

Xn = q2
n(an+1an+2 − an+1xn+1 − c2xn + xnxn+1)

xn

(
q2

n − an+1xn+1 + xnxn+1 − xn

) (3.11)

is a Schlesinger transformation, i.e., Xn is a solution of q-PII with parameter ã = aλ3.
Rational solutions of q-PII (3.7) can be constructed starting from the seed solution

xn = ∓qn which exists for a = ±1. From this solution we can construct, using (3.11),
the higher ones. We have for instance

xn = ∓qn+1
qn(λ

2 + λ + 1) ± λ2

qn(λ2 + λ + 1) ± 1

which satisfies q-PII for the parameter ±λ3.
(iii) The third mapping is

(xnxn+1 − 1)(xnxn−1 − 1) = anxn/(xn − bn) (3.12)

which is a genuine q-PII equation with the parameters an = aq2
n, bn = qn with qn = λn. The

Miura transformations are given by

yn = ρnxn

xnxn+1 − 1
(3.13a)

xn = ρn−1yn − qn

ynyn−1 − 1
(3.13b)
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where an = ρnρn−1. Eliminating xn and introducing the constant c2 = λ/a we obtain the
corresponding q-P34

(ynyn+1 − 1)(ynyn−1 − 1) = −qnρn

yn

(yn − c)(yn − 1/c). (3.14)

An Airy-type solution can be found in the case a = λ and yn = 1. Using the equation (3.13a)
we get the discrete Riccati equation

xnxn+1 − 1 − qn+1xn = 0

which can be linearized by means of xn = Rn+1/Rn to the q-Airy equation

Rn+1 − qnRn − Rn−1 = 0.

In order to construct the Schlesinger transformation we use the symmetry of q-P34, c → 1/c,
which leads to the following auto-Bäcklund:

Xn = c(qn − xn)(xnxn−1 − 1) + qn/c

qnxn−1 − xnxn−1 + 1
. (3.15)

The variable Xn satisfies an equation of the form (3.12) where both an and bn are modified. We
find indeed that the new parameter is A = λ2/a provided we choose as independent variable
Qn = ρn−1 (which means that we must have Bn = ρn−1).

In order to obtain the Schlesinger transformation we use the self-Miura transformation
given by

χn = − ρn−1

xnxn−1 − 1
(3.16a)

xn = − qn

χnχn+1 − 1
(3.16b)

where χn verifies the same mapping

(χnχn+1 − 1)(χnχn−1 − 1) = ãnχn/(χn − b̃n)

with ãn = qnqn−1 and b̃n = ρn−1, i.e. ã = 1/a. Combining (3.15) and (3.16) one obtains the
true Schlesinger transformation corresponding to a parameter a/λ2 but the explicit expression
is too lengthy to be given here.

(iv) The fourth mapping is

(xnxn+1 − 1)(xnxn−1 − 1) = an(xn − bn). (3.17)

The full freedom of parameters is given by log an = 3αn + β, log bn = −αn + γ + jnδ + j 2nζ .
We shall restrict ourselves to the symmetric case δ = γ = 0 so that we have a q-PII equation.
We rewrite the mapping in a more convenient way,

(xnxn+1 − 1)(xnxn−1 − 1) = aq3
nxn + q2

n (3.18)

where qn = λn. The self-Miura transformation is given by

χn = µqn(aqnxn + 1)

(xnxn+1 − 1)
(3.19a)

xn = ρn(1 + ρnχn/a)

µ(χnχn−1 − 1)
(3.19b)

where λ = µ2 and ρn = aqn/µ. The equation for χn is

(χnχn+1 − 1)(χnχn−1 − 1) = ρ3
n

a
χn + ρ2

n (3.20)

so qn → ρn and a → 1/a. This is not a Schlesinger transformation. Its effect is to invert the
parameter a and its square is just a downshift, i.e. xn → χn → xn−1.
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The actual Miura transformation is given by

xn = − qn(a
2yn − s3)

as(ynyn−1 − 1)
(3.21a)

yn = −λqn(axn + qns
2)

s(xnxn+1 − 1)
(3.21b)

where s = aµ. Eliminating xn we find the q-P34 equation

(ynyn+1 − 1)(ynyn−1 − 1) = (s3yn − a2)(a2yn − s3)

a2s3
(
1 − yn

/(
λq2

ns
)) . (3.22)

The Airy-type solutions are given by linearization of the discrete Riccati equation

a(xnxn+1 − 1) + µqn(axn + qns
2) = 0 (3.23)

which is obtained from (3.21b) provided that s3 = a2, i.e. a = 1/µ3 and y = 1. The q-Airy
equation is (putting xn = Rn/Rn−1) given by

Rn+1 + µqnRn + (qnqn−1 − 1)Rn−1 = 0.

In order to construct the auto-Bäcklund transformation we write the q-P34 equation in a simpler
way,

(ynyn+1 − 1)(ynyn−1 − 1) = (yn − c)(yn − 1/c)(
1 − yn

/(
q2

nc
)) (3.24)

where c = s3/a2 = aµ3. Now we are using the symmetry c → 1/c which is valid provided
that qn also is changing so that q2

nc → q2
n

/
c. We introduce these new values in the Miura

transformation (3.21a) and obtain

χn = qn

µ

1 − ync

ynyn−1 − 1

which is a solution of

(χnχn−1 − 1)(χnχn+1 − 1) = AQ3
nχn + Q2

n (3.25)

where A = 1/aλ3,Qn = ρn+2. It suffices now to apply the self-Miura (3.19b) to obtain

ξn = µQn

1 + Qn+1χn+1/A

χnχn+1 − 1

which satisfies (3.18) with parameter ã = aλ3. Thus, ξn indeed introduces a Schlesinger
transformation (the explicit form being too lengthy to be written here).

(v) The fifth mapping is

(xnxn+1 − 1)(xnxn−1 − 1) = (1 − anxn)(1 − bnxn). (3.26)

The full freedom of parameters is log an = αn + β + (−1)n(nγ + δ) + inζ + (−i)nη, log bn =
αn + θ + (−1)n(nγ − δ) − inζ − (−i)nη. Here we shall restrict ourselves to an = aqn,

bn = qn/a where qn = q0λ
n. The continuous limit of the equation is w′′ = 2w3 + wz + κ

provided that xn = ε
√

2w, λ = 1 + ε3/4, q0 = i
√

2, and a = i(1 − ε3κ/2).
The self-Miura transformation in this case is very simple (being in fact a downshift of xn),

χn = q2
nxn − (a + 1/a)qn + xn+1

xnxn+1 − 1
≡ xn−1.
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The Miura transformations are given by

xn = qn(c(yn−1 − 1) + yn − 1)

aλ(ynyn−1 − 1)
(3.27a)

yn = −qnqn+1 + aqn+1xn+1 + qnxn/a − 1

xnxn+1 − 1
(3.27b)

with c = a2λ2. Eliminating xn we find the q-P34

(ynyn+1 − 1)(ynyn−1 − 1) = qnqn+1(yn − 1)(yn − c)(yn − 1/c)

(yn − qnqn+1)
. (3.28)

One can see that yn = 1 is always a solution of the q-P34 equation and in this case
xn becomes indeterminate in the Miura (3.27a). From the second Miura we get that
xnxn+1 − 1 = −qnqn+1 + aqn+1xn+1 + qnxn/a − 1 which factorizes to

(xn − aqn+1)(xn+1 − qn/a) = 0 (3.29)

which leads to rational solutions. This solution is compatible with (3.26) only if a2λ2 = 1.
However, this constraint cannot be satisfied in the sector of the continuous limit we described
above. The present rational case is interesting nonetheless as it allows us to construct
a linearizable solution to (3.26). Starting from a = ε/λ (where ε2 = 1) we find that
equation (3.29) becomes (xn − εqn)(xn+1 − εqn+1) = 0. Since this relation is a product for
two consecutive n one could imagine that the solution xn = εqn is valid only for even or for
odd n. If we consider (3.26) for, say, n = 2m + 1 it is straightforward to show that x2m = εq2m

leads to an identity and that x2m+1 = εq2m+1 leads to an equation for x2m+2 that is homographic
in terms of x2m : x2m+2x2m − ε(x2m+2 + x2m)/q2m+1 − q2

2m+1 + λ + 1/λ = 0. This equation can
be linearized to a second-order mapping with a Cole–Hopf transformation but in this case the
situation is even better since x2m = εq2m is a solution. Using this solution it is straightforward
to reduce this equation to a linear first-order mapping. Putting x2m = εq2m + 1/R2m we find
for R the (inhomogeneous) linear equation:

(q2m+2q2m+1 − 1)R2m+2 + (q2m+1q2m − 1)R2m + εq2m+1 = 0.

On the other hand, if c = a2, λ2 = −1 then yn = −1 is also a solution. This solution
gives a different linearizable case which, as a matter of fact, is the only one found in
the sector of the continuous limit. The Airy-type solutions arise from the Riccati-type
equation xnxn+1 − qnqn+1 + aqn+1xn+1 + qnxn/a − 2 = 0 which can be linearized through
xn = −aqn+1 + Rn+1/Rn to

Rn+1 + 2aqn+1Rn − 2(qnqn−1 + 1)Rn−1 = 0.

In order to construct the auto-Bäcklund/Schlesinger transformation we use the symmetry that
consists in interchanging c and 1/c in the q-P34 equation. Finally, we obtain

Xn = x2
n(aqn − cxn−1) + xn(acqn+1xn−1 + c − 1 − qnqn−1) + qn−1(1 − c2)/a

xn(acqn − xn−1) + 1 + aqn+1xn−1 − c(1 + qnqn−1)
(3.30)

which satisfies (3.26) with parameter aλ2.
The simplest rational solution, xn = 0, is obtained for a = ±i. The next rational

solution is

xn = ±i
(λ4 − 1)qn−1

1 + λ2(1 + qn−1qn)

which exists when a = ±i/λ2.
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(vi) The next mapping we shall treat is a difference equation,

(xn + xn+1)(xn + xn−1) = (xn + zn + kn)(x
2 − b2)

(xn − 2zn)
. (3.31)

The full freedom of this equation is given by zn = αn + η + jnγ + j 2nδ, kn = σ + (−1)nθ −
3jnγ − 3j 2nδ and we are treating only the symmetric case γ = δ = θ = 0 which means
that kn is a constant. An interesting property of this mapping is that it possesses two
different continuous limits. The first one is xn = 3 + 4εw, b = 9 + 8ε3κ/3, k = −9/2
and zn = 7/2 − 4ε2t which goes to a Painlevé II equation w′′ = 2w3 + wt + κ and the other
one is xn = −8ε2w, b = 4ε3κ/3, k = 9 and zn = −1 − 4ε2t which leads to P34 equation
w′′ = w′2/(2w) + 2w2 − wt − g2/(2w).

So equation (3.31) is a discrete PII and a discrete P34 at the same time. It is therefore not
astonishing that it possesses a genuine auto-Miura,

yn = zn − m − (xn − b)(xn+1 − zn − k)

xn + xn+1
(3.32a)

xn = zn−1 + k − (yn − β)(yn−1 − zn−1 + m)

yn + yn−1
(3.32b)

where 2m = b − α and 2β = b − 2k + 3α. Using (3.32) we obtain

(yn + yn+1)(yn + yn−1) = (yn + ζn + κ)(y2 − β2)

(yn − 2ζn)
(3.33)

with 2ζn = 2zn + α + k + m and 2κ = −(k + 3m + 3α). We remark that (3.33) is invariant
under β → −β. We can use this property to obtain an auto-Bäcklund transformation for
(3.31). The standard procedure is to start from a given xn, use (3.32a) and construct yn, then
change the sign of β in (3.32b) and, with the same yn, compute the new xn. The latter, however,
would not be a Schlesinger transform of the original xn but of the yn that could have been
obtained from (3.32a) for the opposite value of b. To get a Schlesinger transform one would
therefore need a third Miura. Hence, in order to work with only two Miuras rather than three,
we choose not to proceed in this way. Rather, we start from (3.32a) and obtain yn which, given
the fact that xn and yn satisfy the same equation (although with different parameters) can be
taken as a new x, yn ≡ χn. Then (3.32a), with χn, ζn, κ, β and 2µ = β − α can be used to
compute a new y. Calling this new variable Xn we find that it satisfies (3.31) with parameters
Zn = zn + α/2, K = k − 3α/2 and B = b + 3α. This defines an auto-Bäcklund/Schlesinger
transformation for (3.31). The explicit form of this auto-Bäcklund transformation will not be
given here since it would cover several lines. Still, the procedure outlined just above allows
for its algorithmic construction and one can use the transformation thus obtained, for instance,
to derive explicit solutions of linearizable or rational type.

In order to obtain the Airy-type solutions, we consider the Miura with yn = β = 0 which
means that k = b/2 + 3α/2. From the transformation (3.32a) we find

(xn + xn+1)(zn − m) − (xn − b)(xn+1 − zn − k) = 0

which can be linearized through the substitution xn = zn+1 + m + (m − zn−1)Rn/Rn−1 to the
following discrete linear equation:

(Rn+1 + Rn)(2zn − b − α) − 2Rn−1(2zn+1 + b) = 0. (3.34)

In order to construct rational solutions one can see that if b2 = 4k2 then xn = −2k/3 is
an elementary rational solution. The next rational solution computed with the help of the
auto-Bäcklund transformation is xn = 3zn + k/3, obtained for b2 = 9α2/4. We will give one
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more rational solution which is a Schlesinger transform of the elementary one, obtained for
b2 = 4(k + 3α)2, namely xn = −(α + 2k/3)(9zn + 7k)/(9zn + 7k + 12α).

If k = 3α/4 then the elementary solution xn = −2k/3 is also in the linearizable sector
because one can take b = −2k = −3α/2 for which the linearizability condition k = b/2 +
3α/2 holds. What is remarkable here is that the condition for the existence of the second
rational solution is also satisfied. Indeed, if we look at the linear equation (3.34) for b = −3α/2
it simplifies to Rn+1 + Rn − 2Rn−1 = 0 with solution Rn = P + (−2)nQ where P and Q are
constants. For Q = 0 we find that R is a constant and so xn = −α/2 = −2k/3. For P = 0,
Rn/Rn−1 = −2 so xn = 3zn + α/4 = 3zn + k/3. In fact we have an exact expression of xn in
terms of elementary functions, for a full family of values P/Q. This is the only case we know
where such a situation arises for discrete Painlevé equations.

Finally, while investigating the possible forms of discrete PII we concluded that another
form should exist, beyond those obtained in [7]. The main indication for this fact was that
there existed one discrete P34 equation, identified in [8], for which no corresponding d-PII was
found. It turned out that another q-PII indeed exists, one which assumes the form

(xnxn+1 − 1)(xnxn−1 − 1) = (1 − xn/qn)(1 − xnqn+1)(1 − xnqn−1)

1 − axn

/
q3

n

(3.35)

with qn ≡ q0λ
n. The full freedom of the coefficients is log qn = αn + β + γ kn + δk2n + ζk3n +

ηk4n and log an = θ + (2 − k2 − k3)(γ kn + ηk4n) + (2 − k − k4)(δk2n + ζk3n) where k is a fifth
root of unity. The geometry of this equation is described by the Weyl group E

(1)
6 .

Putting x = i(3 + 5εw), λ = 1 − ε3/4, q = i(−2 + ε2t/2), a = 1 + 5κε3/2, we obtain
at the continuous limit the continuous PII: w′′ = 2w3 + tw + κ . Equation (3.35) possesses an
self-Miura transformation of the form

χn = ρn(qnxn+1 + qn+1xn − qnqn+1 − 1)

xnxn+1 − 1
(3.36a)

xn = qn(ρnχn−1 + ρn−1χn − ρnρn−1 − 1)

χnχn−1 − 1
(3.36b)

where ρn = qn

√
λ/a. Eliminating x between the two equations we obtain

(χnχn+1 − 1)(χnχn−1 − 1) = (1 − χn/ρn)(1 − χnρn+1)(1 − χnρn−1)

1 − αχn

/
ρ3

n

(3.37)

which is precisely (3.35) for the variables χ, ρ and parameter α ≡ 1/a.
However, (3.35) does also possess a genuine Miura,

yn = pn

(
m2λ4xn−1 + p2

nxn − mλ3pn − mλpn

)
mλ3(xnxn−1 − 1)

(3.38a)

xn = pn

(
byn+1 + p2

nyn − 1 − bp2
n

)
m(ynyn+1 − 1)

(3.38b)

where b = m2λ and pn = mλ2qn, which allows one to recover on the one hand equation (3.35)
with a = 1/(m4λ7) and on the other hand the (previously known) q-P34:

(ynyn+1 − 1)(ynyn−1 − 1) =
(
1 − p2

nyn

)
(yn − b)(yn − 1/b)(

1 − yn/p2
n

) . (3.39)

This is equation (6.7) of [8] (and what was called there a ≡ q is now p2
n).
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Airy-type solutions can be found in the case b ≡ m2λ = 1 (i.e. a = λ−5) and yn = 1.
Putting xn = mpn+1 +

(
p2

n − 1
)
Rn/Rn+1 we obtain the linear q-Airy equation:

Rn+1 + mpnRn − Rn−1 = 0. (3.40)

One can of course also use the Miuras to construct the auto-Bäcklund of (3.35). The relevant
procedure would be to start from a given xn and use (3.38a) to obtain yn. Next, since the q-P34

is invariant under the transformation b → 1/b, one inverts b in (3.38b) and using the same yn

one then computes a new xn, say Xn. (This is put in the proper perspective if one substitutes
m = √

b/λ in (3.38b).) The new Xn corresponds to a parameter A = λ−10/a. Finally, one
must use the self-Miura in order to invert the new parameter A. Computing a new xn, say
x̃n, with (3.36a), one obtains the auto-Bäcklund of (3.35) for the new parameter ã = aλ10.
Unfortunately, the final expression is too lengthy to be given here explicitly.

4. Conclusions

In this paper, we have presented a collection of results on the various discrete PII equations.
While two of these d-PIIs had been extensively studied in previous works, for the remaining
six known forms no results existed till recently. For all equations analysed, we presented
the Miura transformations which made it possible to construct the associated discrete P34 (in
perfect analogy to what happens in the continuous case).

Several interesting results were obtained along the way. One of the equations examined
(3.31), which was initially identified as a discrete PII, turned out to also be a discrete P34,
and moreover possessed an auto-Miura (compatible with the two different continuous limits).
While analysing the list of known equations we realized that there existed one q-P34 for which
no corresponding q-PII was known. It turned out that the latter indeed existed and we were able
to derive it along with its Miura transformation. For several of the equations we studied, the
search for Miura transformations led to what we called self-Miuras which relate the equation to
itself, albeit with some changes of parameters and of the independent variable. The usefulness
of these self-Miuras becomes evident when one undertakes the construction of the Schlesinger
transformations. The standard procedure for this construction is to start from a solution of
a d-PII, derive a solution of d-P34 through the Miura and use an invariance of the former in
order to construct a new solution of d-PII. Usually one obtains an auto-Bäcklund which is not
a Schlesinger transformation, i.e. there is no simple relation between the parameters of the
initial and final solutions. The way to construct the Schlesinger transformation is to use some
invariance of the d-PII (as explained already in the example of the continuous PII) in order to
act on the parameters of the solution. However, for many of the d-PIIs we examined no such
invariance exists. Fortunately in these cases, one can use the self-Miuras and still succeed in
constructing the Schlesinger transformations.

For all the d-PIIs studied here, we were able to obtain linearizable solutions (which exist
for special values of the d-PII parameter). The elementary solutions are given in terms of
discrete Airy functions. In most cases, however, the discrete linear equation we obtained had
a structure richer than what one would expect for a discrete analogue of the Airy equation. As
a matter of fact, the richness of the observed structure is related to the fact that the discrete
PII is, in most cases, a reduction of an equation with more degrees of freedom. Curiously
enough, for some of the d-PIIs we were not able to obtain rational solutions. We cannot tell at
this stage whether this absence is the result of some deep property of the equations in question
or whether it reflects the inability of the authors to imagine a sufficiently complicated rational
solution.
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While several discrete analogues of PII have been treated in this paper, bringing the total
number to nine, they do not exhaust the list of all possible d-PIIs. More examples, based on
equations related to affine Weyl groups E

(1)
7 and E

(1)
8 , certainly exist. We hope to return to

this investigation in some future work.
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